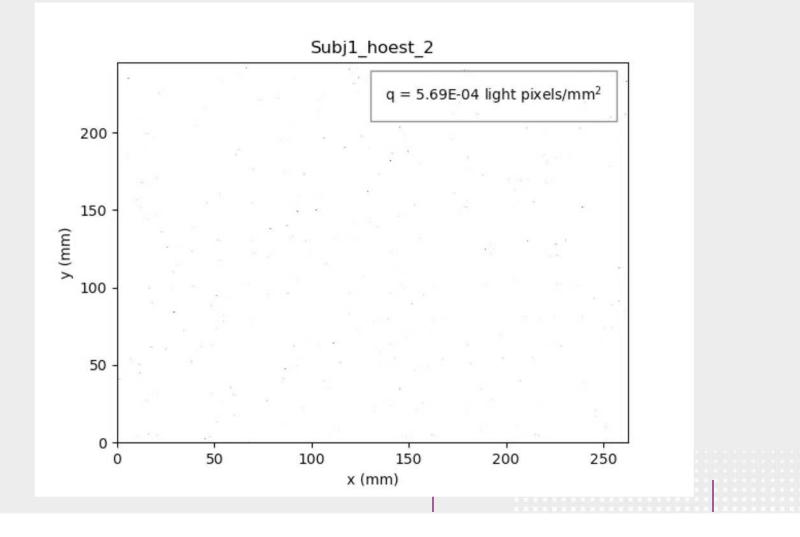

Small Droplet Aerosols from Coughing and Speaking and SARS-CoV-2 Transmission

Daniel Bonn, WZI/IoF

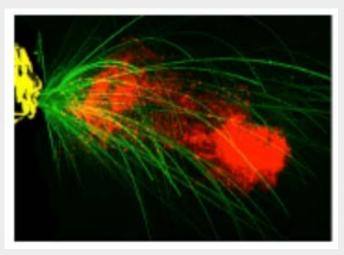
Evidence is piling up that the very efficient spreading of the coronavirus happens by aerosols: Nature 2020, NEJM 2020, Lancet 2020, PNAS 2020, WHO Scientific brief 9/7/2020 virus transmission is physics!

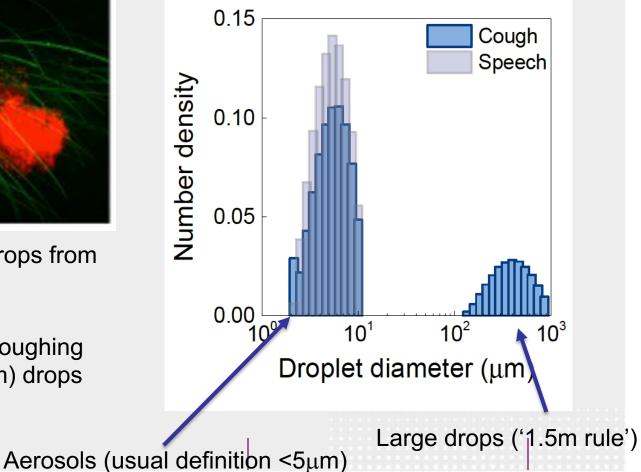
Aerosols defy the 1.5 m (6 ft) rule

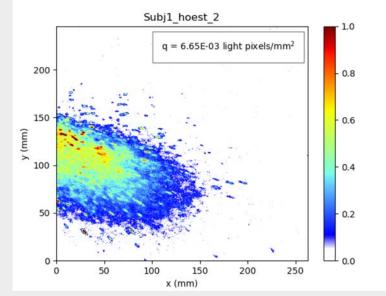

L. Bourouiba et al.J. Fluid Mech. 745, 537 (2014).


Respiratory masks from the ICU at our academic hospital (Amsterdam UMC)

Can high-flow nasal cannula (HFNC) oxygen therapy be used on Covid-19 patients without risk for the hospital staff?

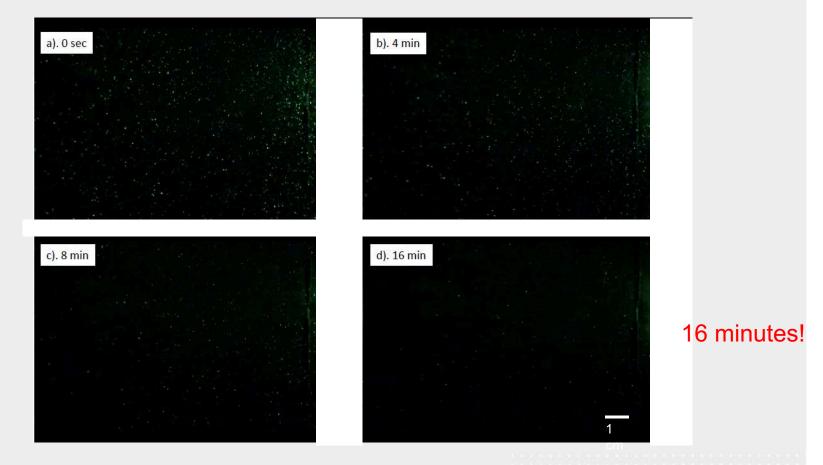



Aerosols: Laser sheet imaging of a cough


Aerosols: Drop sizing (laser diffraction)

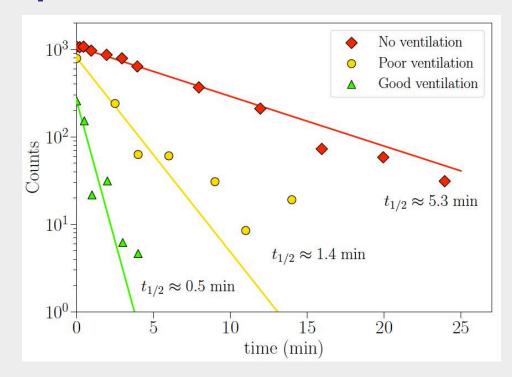
- Small (2-10 µm) drops from both speaking and coughing
- In addition when coughing large (100mm-1µm) drops

How many small drops?


- a single cough: liquid weight of 0.07 ± 0.05 gram,
- speaking ten times: weight of 0.003 ± 0.001 gram.

For coughing: volumetric distribution shows 98 \pm 1% of the volume contained in the large drops (100-1000 μ m).

Small aerosol droplets, ~20 million microdroplets produced in a single cough and ~7 million for speech


Ň

Persistence of aerosols (ill ventilated room)

Small drops take minutes to sediment

Aerosols: Persistence of small drops in small confined spaces

Small droplet aerosols in poorly ventilated spaces; the need for specific measures to prevent SARS-CoV-2 transmission, A. Somsen et al. Lancet Resp.Med.2020

World Health Organization

Transmission of SARS-CoV-2: implications for infection prevention precautions

Scientific Brief

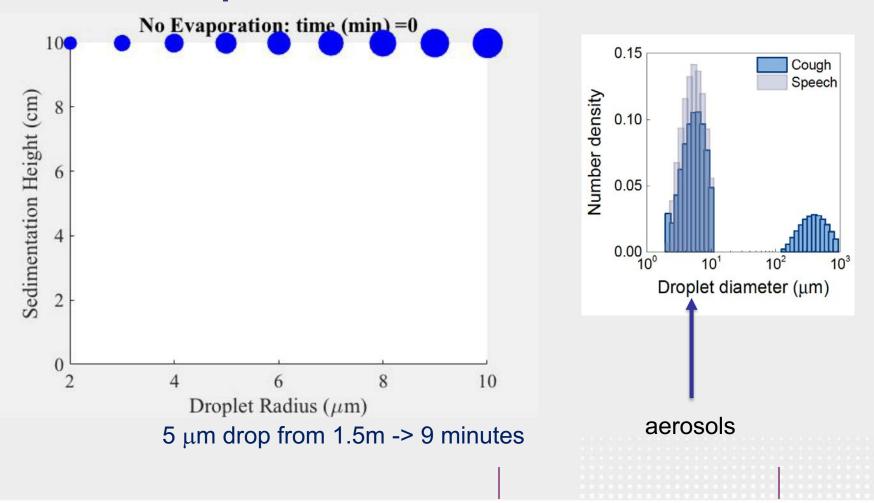
9 July 2020

....Another recent experimental model found that healthy individuals can produce aerosols through coughing and talking (19). To date, transmission of SARS-CoV-2 by this type of aerosol route has not been demonstrated; much more research is needed given the possible implications of such route of transmission.

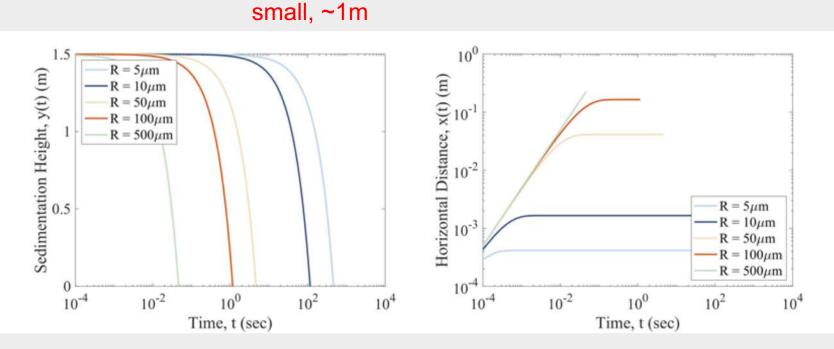
Scientific Brief: SARS-CoV-2 and Potential Airborne Transmissi...

Airborne transmission of SARS-CoV-2 can occur under special circumstances

Pathogens that are mainly transmitted through close contact (i.e., contact transmission and droplet transmission) can sometimes also be spread via airborne transmission under special circumstances. There are several well-documented examples in which SARS-CoV-2 appears to have been transmitted over long distances or times.

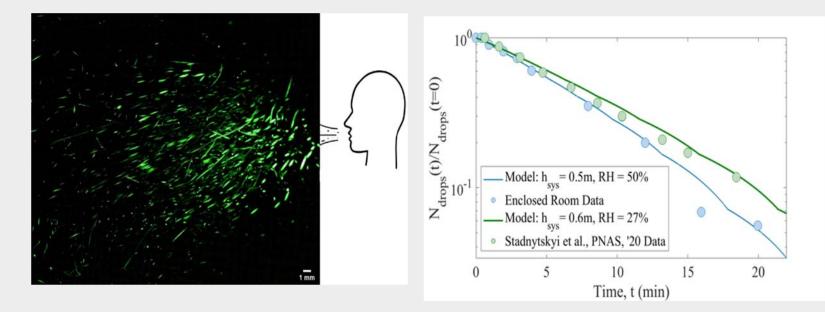


Can we use this knowledge to do a risk assessment?

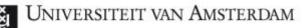

How to model the aerosol persistence?

Aerosols: Persistence of small drops in small confined spaces

Complete model including gravity, evaporation, initial velocity...


Shows that the stopping distance is

Aerosol persistence in relation to possible transmission of SARS-CoV-2 S. Smith et al., Phys.Fluids (2020) (Today!)



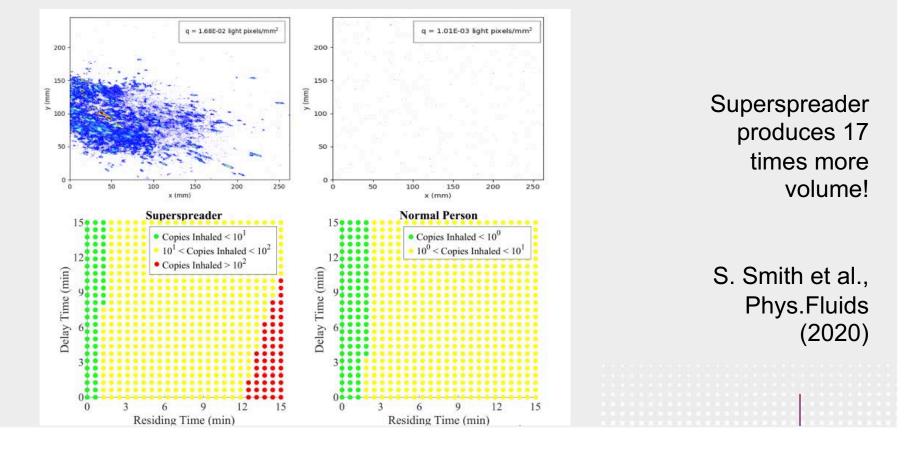
Complete model including gravity, evaporation, initial velocity...

• Quantitatively predicts our and PNAS (Bax and coll.) persistence data

Aerosol persistence in relation to possible transmission of SARS-CoV-2 S. Smith et al., Phys.Fluids. (2020)

Viral load

 \sim 7×10⁶ virus particles/milliliter


 $\sim 10^4$, in the aerosols after 1 cough

~infection after inhaling 100-1000 particles

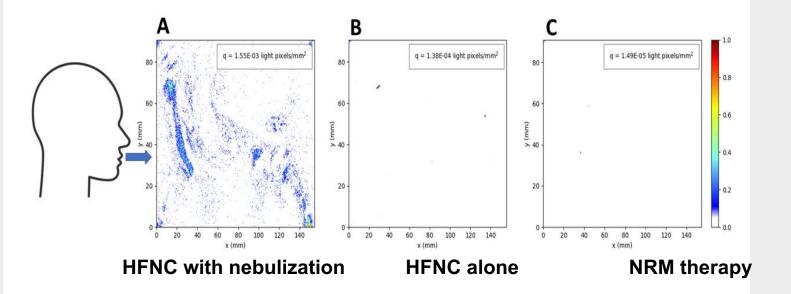
Wölfel et al. *Nature* 2020: **581**: 465-469.

We (Smith et al.)

From SARS-CoV-1

Universiteit van Amsterdam

SPACE	SIZE (M³)	AIR CHANGE PER HOUR (H ⁻¹)	AEROSOL ORIGIN	50% DECREASE (MIN)	AEROSOL PART/L		COVID-19 INFECTION RISK
GYM	2000	5-15	25 visitors	1	<10	<1	Low
TRAIN	150	0-5	20 visitors	2	210	<21	Low
MEETING ROOM	30	10	4 visitors	1	45	<5	Low
NIGHT CLUB	2000	5-15	Artificial	1	<10	<1	Low
CAR	3	5-20	2 visitors	0.5	20	<2	Low
AIRPORT	12000	5-10	~120 visitors	1	<10	<1	Low
RESTAURANT	120	8	25 visitors	1	248	<25	Low
RESTROOM	8	1-4	1 visitor	4	7716	<772	Intermediate
OFFICE SPACE	50	10	5 visitors	1	35	<4	Low
UNVENTILATED LIVING ROOM	80	1-4	4 visitors	5	5214	<520	Intermediate
ELEVATOR	8	1-5	2 visitors	5	4350	<435	Intermediate

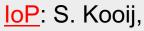

Respiratory masks from the ICU at our academic hospital (Amsterdam UMC)

Can high-flow nasal cannula (HFNC) oxygen therapy be used on Covid-19 patients without risk for the hospital staff?

Respiratory masks from ICU (laser sheet)

R. Bem et al., Aerosol formation during HFNC – risk assessment for SARS-CoV-2 transmission to health care workers, submitted

Risk: LOW


Conclusions

- Aerosol transmission of SARS-CoV-2 is likely to be a risk, but not a very large one
- The solution is: Ventilation, ventilation, ventilation.....
- This is a truly interdisciplinary problem where physics and engineering should be combined with biology and virology

Wat daniel bonn"	Welke mediasoort 2 geselecteerd ~	Waar Overal V	Wanneer 23 Sep 2020 - 11 Nov 2020 ~	Welke talen Alle talen 🗸	Q
			Een zoe	ekvraag opstellen \vee Mee	r filters 🗸
94 resultaten Dubbele artikelen: De minste resultaten \sim ③			Datumbereik:	23 Sep 2020 - 11 Nov 2020	~
15					
10			\neg		
$\sim \sim \sim$			$\vee \setminus$		
	\sim	_ /		_	
0 245ep 265ep 285ep 305ep 2.0ct 4.0ct 6.0ct 8.0ct 10.0ct 12.0ct 14.0ct Aantal resultaten	16 Oct 18 Oct 20 Oct 22 Oct	24.0ct 26.0ct	28 Oct 30 Oct 1 Nov 3 Nov	5Nov 7Nov 9Nov	11 Nov 177mln

The team

Medspray/ IoP: C. van Rijn

AMC: R. Bem, MD, Intensive Care Medicine

Cardiologie Centra Nederland: A. Somsen, MD, Cardiologist

VUMC: L. Hofstra, MD, Cardiologist

TC: Alix Wattjes, Daan Giessen, Tijs van Roon, Clint Ederveen Janssen, Johan Mozes

S. Smith

Papers

- Somsen GA, van Rijn CJM, Kooij S, Bem RA, Bonn D. Measurement of small droplet aerosol concentrations in public spaces using handheld particle counters. Phys Fluids (1994) 2020 Dec 1; 32(12): 121707
- Somsen GA, van Rijn CJM, Kooij S, Bem RA, Bonn D. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. G Lancet Respir Med. 2020 Jul; 8(7): 658–659;
- C van Rijn, GA Somsen, L Hofstra, G Dahhan, RA Bem, S Kooij, D Bonn, *Reducing aerosol transmission of SARS-CoV-2 in hospital elevators*. Indoor air 30 (6), 1065-1066 (2020)
- Smith SH, Somsen GA, van Rijn C, Kooij S, van der Hoek L, Bem RA, Bonn D. *Aerosol persistence in relation to possible transmission* of SARS-CoV-2. Phys Fluids. 2020 Oct 1; 32(10): 107108